的响应特性常被视为一种基准。虽然在实际中几乎没有二阶系统,而是三阶或更高阶系统,但是它们有可能用二阶系统去近似,或者其响应可以表示为一、二阶系统响应的合成。因此,将对二阶系统的响应进行重点讨论。
典型的二阶系统的方框图如图3-6所示,它由一个非周期环节和一个积分环节串联组成,系统的传递函数为
振荡角频率ωd的单位本为rad/s,但因弧度本身无量纲,只表示比值的概念。在研究控制系统时习惯上写为s-1,同时也常简称ωd为频率。
由式(3-12)可知,系统极点的实部为σ,它控制着时间响应的暂态分量是发散还是衰减,以及暂态分量随时间的变化率。当σ0时波段双桥结构,暂态响应随时间增长而发散,当σ0时,暂态响应随时间增长而衰减。由于σ=-ζωn,且ωn不可能为负值,所以,又可以看出,当 ζ0时光电对抗,系统暂态响应将随时间增长而发散,而当 ζ0时,系统暂态响应才能随时间增长而衰减。
当阻尼比ζ=1时,系统具有两重实极点,于是系统暂态响应中没有周期分量,暂态响应将随时间按指数函数规律而单调衰减。此时称系统处于临界阻尼情况。
当ζ=0时,系统将具有一对纯虚数极点,其值为s1,s2=±jω此时称系统处于无阻尼状态,系统的暂态响应将是恒定振幅的周期函数,并且将 称为无阻尼自然振荡角频率,或简称为无阻尼自然振荡频率。
当0 ζ1时,系统具有一对实部为负的复数极点,系统的暂态响应将是振幅随时间按指数函数规律衰减的周期函数,此时称系统处于欠阻尼状态。
(e)0ζ -1(右半平面有带正实根的共轭虚根)时系统响应
图3-8说明系统极点的位置与ζ 、ωn 、σ及ωd之间的关系。对于标出的一对共轭复数极点ωn是从极点到s平面原点的径向距离,σ是极点的实部,ωd是极点的虚部,而阻尼比ζ等于极点到s平面原点间径向线与负实轴之间夹角的余弦,即 ζ=cosθ
由上式可以看出,暂态振荡频率为阻尼自然频率,它是随阻尼比ζ而变化的。这一系统的误差信号,是输入量与输出量之差,即
显然,这个误差信号为一阻尼正弦振荡。稳态时或t=∞时,输入量与输出量之间不存在误差。
如果阻尼比ζ等于零,那么系统的响应变为无阻尼等幅振荡。将ζ=0值代入(3-13)时域响应,便可得到零阻尼情况下的响应c(t),即
从上式可以看出,ωn代表系统的无阻尼自然频率尊龙现金人生就是博。即如果阻尼系数减少到零时,系统将以频率ωn振动淀积率。如果线性系统具有一定阻尼,就不可能通过实验得到无阻尼自然频率,而只能得到阻尼自然频率ωd,ωd 等于